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ABSTRACT 
In Northwestern Canada the Dempster and Inuvik-to-Tuktoyaktuk (ITH) highways create the only all-season transportation 
corridor between Dawson City, Yukon and Tuktoyaktuk, Northwest Territories. These roads traverse a variety of landscape 
types and ecoregions that are underlain by permafrost. As permafrost thaws in response to climate warming, permafrost 
geohazards such as mass wasting by active layer detachments and retrogressive thaw slumps are impacting road 
operation and human activity in the region. This paper uses random forest machine learning to investigate the relative 
importance of topographic, geological, climatological, and ecological variables describing a series of these mapped 
permafrost thaw features within a 5-kilometer buffer on either side of this highway corridor. This provides a valuable window 
into the distribution of thaw sensitive sites across the landscape, and the distribution patterns that can be analyzed within 
their bio-geophysical contexts to identify potentially geohazardous terrains. The design of random forest models to align 
with desired interpretation goals is also discussed. 
 
RÉSUMÉ 
Dans le nord-ouest du Canada, les autoroutes Dempster et Inuvik-Tuktoyaktuk (ITH) créent le seul corridor de transport 
toutes saisons entre Dawson City, Yukon, et Tuktoyaktuk, NWT. Ces routes traversent une variété de types de paysages 
et d’écorégions dont le substrat est le pergélisol. À mesure que le pergélisol dégèle en réponse au réchauffement 
climatique, les géorisques liés au pergélisol, tels que la perte de masse due aux détachements de couches actives et les 
effondrements rétrogressifs dus au dégel, ont un impact sur l’exploitation routière et l’activité humaine dans la région. Cet 
article utilise l'apprentissage automatique forestier aléatoire pour étudier l'importance relative des variables 
topographiques, géologiques, climatologiques et écologiques décrivant une série de ces caractéristiques cartographiées 
du dégel du pergélisol dans une zone tampon de 5 kilomètres de chaque côté de ce corridor routier. Cela fournit une 
fenêtre précieuse sur la répartition des sites prédisposé au dégel dans le paysage et sur les modèles de répartition qui 
peuvent être analysés dans leurs contextes biogéophysiques pour identifier les terrains potentiellement géodangereux. La 
conception de modèles forestiers aléatoires pour s'aligner sur les objectifs d'interprétation souhaités est discutée aussi. 
 
 
1 INTRODUCTION 
 
Permafrost – or perennially frozen ground (Harris et al., 
1988) – is the foundation of Arctic landscapes, underlying 
approximately 40% of the Canadian landmass (Derksen et 
al., 2019), with more extensive distribution in Northern 
latitudes. Ice-bonded sediments are often ice rich, thus as 
climate change progresses, trends towards increased 
permafrost thaw (Åkerman & Johansson, 2008; Biskaborn 
et al., 2019) will result in landscape changes that include 
intensification of thaw-driven mass wasting (Kokelj et al., 
2021a). This poses a threat to infrastructure (Hjort et al., 
2018; Stevens, 2020), the environment (Schuur & Mack, 
2018) and the continuation of important cultural activities 
such as harvesting and travel (Andrews et al., 2016).  

Permafrost thaw is a three-dimensional phenomenon, 
and the connectivity, thickness and surrounding landscape 
characteristics reflect the rate, directionality (Fisher et al., 
2016; McClymont et al., 2013) and impacts of thaw. This 
paper investigates a machine learning approach for 
ranking the measurable landscape characteristics most 
important in assessing the likelihood of mass wasting 
responses to permafrost thaw in a given area, providing an 
opportunity for proactive mitigation. Building from the 
machine learning approach for thaw-susceptibility 

modelling advanced by Rudy et al. (2019), we propose that 
increasing the specificity of machine learning models 
increases their interpretability and usefulness for 
understanding landscape scale trends in mass wasting 
likelihood. 
 
1.1 Study Area 
 
This paper focuses on a 10-kilometer-wide study area 
centered on the Dempster Highway and Inuvik to 
Tuktoyaktuk Highway (ITH) corridors in Northen Canada. 
The Dempster Highway is a 738km long gravel road that 
stretches from just east of Dawson City, Yukon to Inuvik, 
NWT. The ITH is a newer 138km extension of the all-
season transportation corridor that continues from Inuvik to 
Tuktoyaktuk, at the coast of the Arctic Ocean. The majority 
of the Dempster Highway and the entirety of the ITH is 
within the continuous permafrost zone (Heginbottom et al., 
1995). The highway corridor creates a pseudo-transect 
through a variety of permafrost conditions with variable 
geologic and climate contexts, landscape types and 
ecoregions. This diversity in bio-geophysical 
characteristics allows for a comprehensive glimpse into the 
factors that control the distribution of mass wasting related 
responses of the landscape to a changing climate. 



 

1.2 Permafrost Related Geomorphic Features 
 
Within this paper, two types of thaw-driven mass wasting 
features are investigated, active layer detachments (ALD) 
and retrogressive thaw slumps (RTS). 

ALDs develop most commonly in silty clays with low to 
medium plasticity in moderately sloped terrain when the 
base of the active layer detaches from underlying 
permafrost (Lewkowicz & Harris, 2005b). Detachment 
produces a headwall, and a scar zone forms as thawed 
materials slide downslope on a defined shear plane that 
exposes underlying permafrost (Lewkowicz & Harris, 
2005a). Detachment is initiated or propelled by lowered 
cohesion along the basal shear plane, in turn driven by 
excessive pore pressures along this plane resulting in a 
loss of soil strength as shear stresses due to the gravity of 
the overlying material exceed shear strengths (Harris et al., 
1988; Harris & Lewkowicz, 2000). Critical pore-pressures 
may develop when ice rich active layers or ice lenses thaw 
over impermeable permafrost either due to high surface 
temperatures, forest fire activity or meteorological events 
such as heavy rainfall (Lewkowicz & Harris, 2005a).While 
ALDs are a category of mass wasting landform in their own 
right, the scar zone of the ALD can develop into an RTS if 
degradation continues or deepens (Jorgenson & 
Osterkamp, 2005). 

An RTS forms when ice-rich permafrost is exposed and 
thaws (Harris et al., 1988). They are initiated by a variety 
of processes and frequently occur adjacent to lakes and 
creeks including slumping and subsequent erosion into 
these adjacent watercourses (Burn & Lewkowicz, 1990), 
but the scar zone of the ALD can also develop into an RTS 
if ice-rich permafrost is exposed and thawing continues 
(Jorgenson & Osterkamp, 2005). Thawing creates a steep 
headwall as liberated water and sediments run down the 
thaw face and are transported rapidly downslope as a 
debris flow (Harris et al., 1988; Ward Jones et al., 2019). 

The thawing and wasting processes and retrogressive 
retreat of the headwall continue until the headwall reaches 
ice-poor permafrost or there is insufficient transport of 
thawed materials downslope, and the headwall becomes 
covered by debris and insulated from further thaw (Burn & 
Lewkowicz, 1990). RTSs are typically deeper than the 
surrounding active layer. 
 
1.3 Geomorphic Feature Inventory 
 
Sladen et al. (2022) mapped over 2000 mass wasting 
landforms throughout the study area (Figure 1) through 
visual inspection of high-resolution satellite imagery and 
classified them into types and subtypes of features 
according to the methodology developed by Sladen et al. 
(2021). This dataset is comprised of polygon boundaries 
for each landform, and these provided training data and 
labels for the models discussed in this paper. Within the 
context of this paper, we selected the ALD and RTS 
subtypes of flow features category for comparison due to 
their similar ranges (as seen in Figure 1) and because of 
the potential for ALDs to develop into RTSs. 

The distribution of these features across the study area 
is non-uniform, with certain physiographic regions 
displaying higher concentrations than others, as can be 
seen in Figure 1. There are 149 ALD features within the 
inventory. ALDs are present from the Ogilvie Mountains 
area through to the Anderson Plain, with the highest 
concentration occurring in the Eagle Lowlands.  There are 
326 RTS features within the inventory. RTSs are present 
throughout the study area north of the Klondike Plateau, 
and generally increase in frequency in the more northern 
physiographic regions. There is a very low frequency of 
RTS landforms in the Eagle Lowland region and a very low 
frequency of ALD landforms in the Tuktoyaktuk coastlands 
region. 

Figure 1: Distribution of observations of each geomorphic feature subtype by physiographic region and latitude. Vertical 
axis is not to scale between feature types, and instead represents the relative density distributions of a given feature in 
each physiographic region. 
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2 DATA ANALYSIS METHODS 
 
2.1 Random Forest 
 
A random forest (RF) model is a type of machine learning 
classifier built using a series of decision-making 
classification and regression trees (CART). CARTs 
describe partitions within the feature space of a data set 
that allows for the data to be divided into a finite number of 
classes (Loh, 2011; Prasad et al., 2006). Each CART is 
grown using supervised learning methods in which data is 
labelled manually prior to ingestion. Partitions are made on 
a per-variable basis in a way that maximizes homogeneity 
within a grouping and heterogeneity between groupings. 
Diversity of variable precisions and ranges are well 
accounted for in RF modeling (Strobl et al., 2007), as well 
as non-linear relationships and highly correlated or 
intractable variable interactions (Cutler et al., 2007). 

A single CART creates an intuitive classifier, meaning 
it can be easily interpreted by the modeler, however it has 
the potential to overfit to the original data (known as 
training data) due to its simplicity (Biau & Scornet, 2016). 
The RF model solves this issue by creating decision 
redundancy (Biau & Scornet, 2016; Breiman, 2001) and a 
diversity of decision pathways. This is done through the 
use of random subsets of the training data and training 
variables into unique training sets for each CART in the RF 
model, which increases the output stability (Cutler et al., 
2007; Prasad et al., 2006). Additionally, this “bootstrap sub-
setting” allows for unbiased error rate calculations, 
because the testing data does not need to be separated 
from the training data when building the model (Prasad et 
al., 2006). This error rate is called the “out of bag error” and 
is the overall error when classifying each training point with 
a model created without that point. 

RF models can be interpreted through an analysis of 
the importance of each variable and through the response 
of the outcome to each variable. The Variable Importance 
Plot (VIP) displays the marginal influences of each variable 
on the model output accuracy, when a given variable is 
removed from the model. When input variables are 
uncorrelated, this method gives a good indication of which 
variables are the most important to the classification of the 
dataset. When variables are significantly correlated, their 
individual influence on the model may be artificially 
diminished relative to the influence of the described feature 
on the real-world phenomenon being modeled (Wies et al., 
2023). It is important to note that the VIP gives an indication 
of the most important dimensions to the overall model, 
rather than to each individual decision the model makes. 
 
2.2 Explanatory Variables 
 
We compiled a set of 36 variable inputs, enumerated in 
Table 1, that describe landscape characteristics related to 
permafrost, geology, climate, ecology, and geography.  
These have the potential to influence permafrost thaw 
sensitivity and were processed and aggregated using the 
R statistical computing software (R Core Team, 2022). 

Slope, elevation and aspect are topographic variables 
correlated with increased thaw slump activity in permafrost 
terrains within our study area (Lacelle et al., 2015). We 

determined these variables for our study area using the 
ArcticDEM digital elevation model (10 metre spatial 
resolution, 4 metre absolute accuracy in any given 
direction) (Porter & et al., 2022). Elevation was directly 
extracted, and slope and aspect were calculated using the 
terrain function from the Terra package in R(Hijmans, 
2022). To eliminate a false distance between aspect values 
on either side of North, we introduced southern (Equation 
1) and western (Equation 2) exposure metrics (Brenning & 
Trombotto, 2006). 

 
𝑠𝑜𝑢𝑡ℎ𝑒𝑟𝑛 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  −cos (𝑎𝑠𝑝𝑒𝑐𝑡) [1] 
𝑤𝑒𝑠𝑡𝑒𝑟𝑛 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 =  −sin (𝑎𝑠𝑝𝑒𝑐𝑡) [2] 

 
Landcover characteristics are correlated with active 

layer thicknesses (ALT) (Smith et al., 2009) and so were 
included as a potential mass wasting driver in the RF 
model, as ALT. They can also impact the fine-scale 
variability of snow cover due to wind drift and collection 
(Sturm et al., 2001), further influencing the thermodynamic 
regime of the soil and the ALT. The dataset used 
categorizes the likeliest dominant vegetation type for each 
grid cell. This data is sourced from the Wang et al. (2019) 
RF model derived classification, which provides a 30-metre 
resolution gridded dataset of 15 landcover classes for each 
year from 1984 to 2014. Classification was performed 
using RF modelling on Landsat surface reflectance data, 
high resolution imagery and field photography, resulting in 
predictions for the annual dominant plant functional type in 
each pixel. The modal landcover for each pixel across the 
31-year temporal range was taken for this analysis.  

Changes to the ALT are also influenced by occurrences 
of forest fires (Fisher et al., 2016). Forest fires can also 
impact the infiltration potential of an area due to vegetation 
changes, modifying slope responses to rainfall, a potential 
landslide trigger (Kokelj et al., 2015; Young et al., 2022). 
The presence of past forest fire activity has been linked to 
increased rates of mass wasting in areas adjacent to the 
study area. Fire history data for the study area was sourced 
from the territorial geomatics databases for both the NWT 
(NWT Centre for Geomatics, 2019) and the Yukon 
(Wildland Fire Management - Government of Yukon, 2014) 
in the form of vector boundaries of fire events. The total 
area of each fire and the year of occurrence were extracted 
for each data point. 

Surficial geology was sourced from the Quaternary 
Geology of Canada and Greenland map as prepared by 
Fulton (1989), available in a vector format. No minimum 
resolution value is provided, but the dataset includes a 
smallest polygon element of approximately 20m2. While 
this denotes the smallest bounded area captured by the 
map, there may be heterogeneity within each zone that is 
not captured by this data product. The permafrost zones – 
taken from Heginbottom et al. (1995) – are also provided 
as vectors and give estimates of areas with high likelihoods 
of each permafrost density category but may not reflect fine 
scale conditions. 

Ground ice probability data is sourced from the Ground 
Ice Map of Canada (O’Neill et al., 2022), and provides an 
estimate of the combined volumetric percentage of excess 
ice in the top 5 m of permafrost. This data is also available 
as separated segregated, wedge and relict ice. This ground 



 

ice dataset was built based on surficial materials, 
permafrost distribution, glacial extents, and modeled paleo 
vegetation (O’Neill et al., 2019), and the potential 
prevalence of ice is represented with qualitative 
descriptors. Absolute accuracy of the model is not 
available, but it should be noted that validation of the model 
involved a combination of comparisons to field data on ice 
presence as well as to the observation of ground ice related 
geomorphometric features. This indicates that there may 
be some tangled causality between the presence of the 
mass wasting sites investigated within this project and the 
predictions of the ground ice concentrations in the dataset 
generated with the O’Neill et al. model (2019). That is, the 
ground ice data being used to predict the presence of mass 
wasting sites may have been generated using the 
presence of these same sites. The distance to the 
Wisconsinan glacial limit of the Laurentide Ice Sheet (Duk-
Rodkin, 1999) was also calculated for each location within 
the glacial extent. A flag value was given to datapoints 
located beyond (southwest of) the glacial extent, rather 
than an explicit distance. 

RTSs are often instigated by hydraulic erosion at the 
toe of the slope (Burn & Lewkowicz, 1990), and there are 
growing concerns about the impact of RTS features on the 
chemistry and overall ecological health of adjacent streams 
and lakes (Kokelj et al., 2005, 2013, 2021), indicating that 
there are frequent slumps in close proximity to water 
features in the region. The distance to the nearest 
watercourse or lake can also give an indication of the 
general soil moisture regime, which affects the pore 
pressure and resulting shear strength of thawed soils as 
well as influences ALT and the overall thermodynamic 
regime of the soil (Clayton et al., 2021).  

The final set of variables used in this analysis was a 
qualitative dataset that divides the study area into a set of 
three climate zones and a quantitative dataset that includes 
19 calculated bioclimatic variables. The climate zones 
include a tundra climate, a subarctic climate with year-
round precipitation and a continental subarctic climate with 
dry summers (Beck et al., 2018). The bioclimatic dataset 
consists of a series of calculated metrics that combine 
precipitation and temperature data from rasterized climate 
models to create descriptors of local climate behaviour and 
its temporal variability (Fick & Hijmans, 2017). 
 
Table 1. Explanatory variables used in Random Forest 
modelling. 
 

Explanatory 

Variable 

count Data Type (Units) Source 

Elevation 

 
(1) 10 metre raster (m) PGC Arctic 

DEM (Porter 
& et al., 
2022) 

Slope (1) 10 metre raster 

(degrees) 

ArcticDEM 

derivative 

Aspect (and 
south/west 

exposure 

metrics) 

(2) 10 metre raster 

(degrees) 

ArcticDEM 

derivative 

Landcover (1) 30 m raster 

(categorical) 

NASA ABoVE 
(Wang et al., 

2019) 

Fire History (2) vector dataset of 
event records (fire 

area, fire) 

Territorial 
Governments 
(NWT Centre 

for 
Geomatics, 
2019; 

Wildland Fire 
Management 
- Government 

of Yukon, 

2014)  

Surficial 

Geology 

(1) vector dataset 

(categorical) 

Geological 
Survey of 
Canada 

(Fulton, 1989) 

Permafrost 

Extents 
(1) vector dataset 

(categorical) 

Natural 
Resources 
Canada 

(Heginbottom 

et al., 1995) 

Ground Ice 
(including 
bulk, 

segregated, 
wedge and 

relict ice) 

(4) 1 kilometre raster 
dataset (ranked 
categories of 

prevalence) 

GSC (O’Neill 

et al., 2022) 

Distance to 

Glacial Limit 
(1) Euclidean distance 

calculated to vector 

dataset (m) 

GSC (Duk-

Rodkin, 1999) 

Distance to 
Watercourses 

and Lakes 

(2) Euclidean distance 
calculated to 

1:50,000 scale 

vector dataset (m) 

Government 
of Canada 

(Natural 
Resources 
Canada, 

2017) 

BioClimatic 
Variables 

(full list in 

Appendix) 

(19) 1 kilometer raster 
of various 

calculated 

averages/variances 

WorldClim 

(Fick & 
Hijmans, 
2017) 

Climate 

Zones 
(1) 1 kilometre raster 

(categorical) 

Nature: 
Scientific 

Data (Beck et 

al., 2018) 

 
2.3 Training Dataset 
 
Datapoints input into the RF model building algorithm were 
created as a combination of the polygons outlining 
identified mass wasting landforms from Sladen et al. (2022) 
and an equal number of randomly distributed points located 
within the study area exclusive of these polygons. The 
randomly distributed points form the centroids of the control 
set of sampling polygons, each with a circular buffer of an 
area equal to the median mass wasting polygon from the 
mass wasting inventory. The 950 total datapoints are 
labeled with their subtype or as control points for the 
purposes of classification. The locations of each of these 
points can be seen in  
Figure 2. 



 

 
 
Figure 2: Locations of RTS and ALD features within the 
study area boundary as well as generated control points for 
the machine learning training dataset. 
 

For sampling, we used the finest reasonable resolution 
of each explanatory variable and performed this for each 
parameter with the extract function from the Terra package 
(Hijmans, 2022). Categorical explanatory variables 
sourced as vector datasets were sampled based on the 
proportional inclusion of the categorical polygon within 
sampling polygon boundaries. Calculations of Euclidean 
distances between centroids of sampling polygons and 
vector datasets (glacial limit, watercourses, and lakes) 
were performed using the st_distance function from the 
Simple Features R package (Pebesma, 2018). 
 
3 RESULTS 
 
Using the training dataset, we constructed a series of five 
random forest models. Each model contained all the 
variables listed in Table 1, with different dataset partitions 
based on the labels of the points. The first two models 
compared ALD and RTS datapoints to the control set. 
These models are designed to give an idea of the relative 
difference between each type of mass wasting affected 
area and the background landscape. The last three models 
served to compare these two mass wasting types to each 
other. Model 3 combined the ALD and RTS occurrence 
datapoints into one category against the control points. 
Model 4 directly compared the RTS and ALD datapoints 
without any control points and Model 5 compared all three 
classes. The results of these model runs are described in 
the following sections. 
 
 
 

3.1 Active Layer Detachments 
 
There are 149 ALDs within the inventory for which a 
complete set of variables can be compiled. The random 
forest model generated from these 149 points and 149 
randomly spaced control points had an out of bag error 
estimation of 8.05%, with 16 false positives and 8 false 
negatives for the prediction of ALD landforms amongst the 
298 training points (Table 3).  
 
Table 3. Confusion matrix for the ALD presence/absence 
random forest model (Model 1). 
 

  Predicted Class  

Class Error   ALD Control 

True Class ALD 141 8 5.37% 

Control 16 133 10.7% 

 
The most important variable in determining the 

presence of an ALD when compared to the control points 
was slope, followed by the mean annual temperature 
(labelled as BIO1 in Figure 3), south exposure, maximum 
temperature of the warmest month (BIO5), the temperature 
of the wettest quarter (BIO8), the distance to the nearest 
watercourse and the mean temperature of the warmest 
quarter (BIO10), the mean temperature of the driest quarter 
(BIO9), the mean diurnal temperature range (BIO2) and the 
annual precipitation (BIO12) of a given datapoint’s location. 
The VIP of this model is shown in Figure 3. There is no 
prescribed cut-off in mean decrease in accuracy to 
determine whether a variable is irrelevant to a model, but 
the top 10 most important variables have been shown in 
Figure 3 for clarity. 
 

 
 
Figure 3: Variable importance plot displaying the 10 most 
important variables in predicting ALD presence in 
comparison to control points (Model 1).  
 
3.2 Retrogressive Thaw Slumps 
 
There are 326 RTSs within the inventory for which a 
complete set of variables can be compiled. The random 
forest model generated from the 326 slump occurrence 



 

points and the 326 randomly spaced control points had an 
out of bag error estimation of 6.13%, with 28 false positives 
and 12 false negatives for the prediction of RTS landforms 
amongst the 652 training points (Table 4). 
 
Table 4. Confusion matrix for the RTS presence/absence 
random forest model (Model 2). 
 

  Predicted Class  

Class Error   RTS Control 

True Class RTS 314 12 3.68% 

Control 28 298 8.59% 

 
The most important variable in determining the 

presence of a RTS when compared to the control points 
was slope, followed by the distance to the nearest lake, the 
mean diurnal temperature range, south exposure, 
isothermality (diurnal temperature range/annual 
temperature range), elevation, the precipitation 
seasonality, the mean temperature of the warmest quarter, 
the annual mean temperature, and the annual temperature 
range. 
 
3.3 Comparison of ALDs and RTSs 
 
There is a total of 475 RTS and ALD sites within the 
inventory for which a complete set of variables can be 
compiled. Three models were created with both ALD and 
RTS points included. Model 3 considers these 475 points 
to belong to a single category of mass wasting presence in 
comparison to 475 control points representing an absence 
of mass wasting sites. Model 4 directly compares the two 
landform types with no control points. Model 5 compared 
both types of mass wasting landforms and the control 
points as individual categories.  

Model 3, generated to compare the combined ALD and 
RTS points to the control points, has an out of bag error 
estimation of 7.37% with 36 false positive and 34 false 
negative predictions of mass wasting landform presence 
across the 950 training points (Table 5). The five most 
important variables are slope, distance to the nearest lake, 
south exposure, elevation, and the mean diurnal 
temperature range respectively. 
 
Table 5. Confusion matrix for the RTS and ALD combined 
presence/absence random forest model (Model 3). 
 

  Predicted Class  

Class Error   RTS/ALD Control 

True Class RTS/ALD 441 34 7.16% 

Control 36 439 7.58% 

  
Model 4 compares only the ALD and RTS points with 

no control points. The out of bag error estimation is 3.79% 
with 12 of 149 ALD sites incorrectly classified as RTS sites 
and 6 of 326 RTS sites incorrectly classified as ALD sites 
(Table 6). The five most important variables for this model 
are mean diurnal temperature range, south exposure, 
slope, annual mean temperature, and the maximum 
temperature of the warmest month. 

Table 6. Confusion matrix for the RTS and ALD 
comparison random forest model (Model 4). 
 

  Predicted Class  

Class Error   ALD RTS 

True Class ALD 137 12 8.05% 

RTS 6 320 1.84% 

 
The final model generated to compare all three 

categories of points (ALD, RTS and control) has an out of 
bag error estimate of 8.53%. Table 7 shows the confusion 
matrix for this model. The random forest model classifying 
these three categories was most likely to mislabel ALD 
points. For this model, the five most important variables are 
slope, distance to the nearest lake, south exposure, 
elevation, and the mean diurnal temperature range. 
 
Table 7. Confusion matrix for the RTS and ALD 
comparison random forest model (Model 5). 
 

  Predicted Class  

Class Error   ALD RTS Control 

True Class ALD 122 9 18 18.1% 

RTS 2 304 21 6.75% 

Control 6 26 443 6.74% 

 
4 DISCUSSION 
 
There are three model outputs through which the 
generated RF models have been interpreted. The first 
metric for model interpretation is the out of bag error, or 
prediction accuracy, of each model and the resulting 
confusion matrix (Tables 4 through 7). Model 1 was built 
solely to classify ALDs and has a prediction accuracy of 
91% while Model 2, built to classify RTSs has a prediction 
accuracy of 93%. These results are quite similar, 
particularly given the differences in dataset size, and 
indicate a very good model fit, with both models displaying 
higher class accuracy for the landform presence points 
than the control points. This follows from the assumption 
that control points taken randomly across the study area 
will display higher variability in their characteristics than 
points taken within areas experiencing similar geomorphic 
processes. The combined presence absence model 
(Model 3) has an accuracy of 92% and the three-class 
model (Model 5) has an accuracy of 91%, though the ALD 
class had a significantly higher misclassification rate than 
the other classes but is obscured by the lower number of 
points in this class as compared to the other two. These 
results overall indicate that the models fit the dataset well, 
and that the other two metrics of interpretation discussed 
here can be legitimately used. 

The second metric of evaluation that we used in RF 
interpretation is the variable importance rankings. For 
models where control points are included (Models 1, 2, 3 
and 5), slope is the most important variable in 
classification. Model 4 directly compares ALD and RTS 
occurrence without control points, and diurnal temperature 
range and southern exposure rise above slope in 
importance, indicating that in that specific decision, the 



 

slope of the ground is important but not as critical as diurnal 
temperature range and the aspect of the slope. Similarly, 
in the four models that contain control points in their 
training datasets (Models 1, 2, 3 and 5), the distance to the 
nearest waterbody ranked among the most important 
variables. This was not the case in comparing RTS and 
ALDs (Model 4), where distance to the nearest 
watercourse and nearest lake ranked 11th and 12th out of 
the variable inputs in terms of importance to model 
accuracy. This difference in variable importance between 
models allows for an otherwise black box model to be 
interpreted in a higher granularity due to the specificity of 
the models. The value added to the interpretability of these 
models means that landscapes can be parsed for clusters 
of characteristics that would indicate increased likelihood 
of one or more geomorphic features developing, 
independent of their morphological similarities. 

The final method of RF interpretation that we used is 
the model response to individual variables, known as a 
partial dependence curve. This result shows how a model 
reacts to variance in one dimension when all others are 
held steady. For example, in the case of classifying RTSs 
vs ALDs, Model 4 and 5 are both more likely to choose the 
RTS class for shallower slopes and the ALD class for 
steeper slopes. Additionally, across the study area, ALDs 
are more likely to occur in areas with higher average 
annual temperatures than RTSs. This method of 
interpretation can show both real responses to landscape 
variables or it can indicate the potential for there to be 
underlying geographic reasons for the link between the 
occurrence of a mass wasting feature and a variable. It is 
possible that at a local scale, these features do respond to 
small scale temperature variation in this way. It is also 
possible that the apparent presentation of this relationship 
is an artifact of the geographic distribution of the features 
within the study area. There is a higher density of ALDs in 
the warmer southern reaches of the study area, and a 
higher density of RTSs in the cooler Tuktoyaktuk 
coastlands near the north. Thus, the individual partial 
dependence of a variable must be analyzed in concert with 
other influential variables and explanatory geologic 
processes in order to truly understand the causality of that 
specific variable. At the scale of the Dempster-ITH study 
area, the links between each of the climate variables and 
mass wasting activity yield classification results of a high 
accuracy, but it is important to understand that models built 
only on this training set may not be scalable without an 
expanded dataset or further analysis of both smaller or 
larger regions. This is due to a high correlation between 
latitude and average annual temperature and the nearly 
linear nature and low longitudinal variation of the study 
area. This is potentially true for any analysis where 
variables follow spatial trends and should be kept in mind 
when generating models over large areas.  

Generally, variables with higher spatial resolution 
proved to be more important in model classification at the 
landform boundary scale. Due to the fine scale and limited 
area covered by this dataset, variables that captured fine 
scale landscape variability ranked quite highly in each 
model’s variable importance results. RF models built for 
similar purposes using coarser scale feature inventories 
(such as rasters of frequencies of landform occurrence) or 

broader study areas may be better suited to leveraging 
data of lower resolutions. 

The models presented in this paper demonstrate the 
feasibility of creating a random forest model for the 
classification of geomorphic feature presence in 
permafrost zones with great accuracy. They also highlight 
that a deeper understanding can be gained from 
interpretation of the model characteristics when generated 
on very specific subsets of data and classes designed for 
the investigation of specific relationships between features 
and landscape descriptors. The multiple configurations of 
RF models increases the understanding of how each 
model is making the decisions it outputs, permits a rapid 
assessment of critical landscape characteristics for 
different feature occurrences and allows for more 
confidence in the final classification. 

 
5 FUTURE WORK 
 
This paper presents an analysis of a subset of the available 
mass wasting feature dataset and outlines three methods 
for interpreting and fine-tuning RF models based on 
outputs and behaviour. Further analysis of the other 
subtypes of geomorphic features present in the Dempster-
ITH corridor will complete the set of intra-class variable 
importance rankings. This creates opportunities for high 
dimensional analysis of the differences in likelihood of each 
type of feature in the landscape currently and under future 
climate scenarios. Additionally, performing this analysis 
over geographic clusters of features will provide insight into 
these differences over different landscape presentations 
and ideally eliminate or quantify the effects of geometric 
artifacts in the model results. 

While not possible for an analysis of the inventory used 
in this paper, random forest models of the type discussed 
here could be used with dated mass wasting inventories to 
create time-series of risk related to vegetation and 
landcover change as well as climate variations with 
increasing global temperatures. 
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