

InSAR Time Series Analysis of Seasonal Active Layer Dynamics in Low-Land Permafrost Terrain

Northwest Territories, Canada

Allison Plourde Fall 2023

# Project Overview

- 6 in-situ research stations
  - Measuring vertical deformation and snow depth
  - 1 anchored, 1 floating Corner Reflector
- 2 InSAR stacks
  - RADARSAT-2 Ultrafine
    - C-band, 24-day repeat, 3x3m resolution
    - 22km x 23 km
  - TerraSAR-X Stripmap
    - X-band, 11-day repeat, 3x3m resolution
    - 13kmx30km





### Inclinometer Measurements 2022 - 2023

- Site 1 shows subsidence during winter
- Sites 4, 5, 6 have similar amplitudes/patterns
- Significant subsidence at sites 5 and 6 between July and August
- Site 2 malfunctioned due to water infiltration
- Site 3 reinstalled September 2022

|                            | Site 1 | Site 4 | Site 5 | Site 6 |
|----------------------------|--------|--------|--------|--------|
| Seasonal Amplitude<br>(cm) | 4.8    | 6.9    | 8.8    | 6.3    |





Source: https://insar.space/insar-technology/





Phase due to Snow Depth:

$$\Delta\phi_{snow} = \frac{4\pi}{\lambda} D_s \left( \sqrt{(e-1+\cos^2\theta)} - \cos\theta \right)$$

Phase due to Vertical Surface Deformation:

$$\phi_{heave} = \frac{4\pi}{\lambda} D_H \cos\theta$$

2 $\pi$  Ambiquity

| Component                     | RS2     | TSX    |
|-------------------------------|---------|--------|
| Surface Deformation           | 2.8 cm  | 1.6 cm |
| Snow Depth (derived from SWE) | 11.6 cm | 6.6 cm |

## Model Derived from Stefan Equation

$$z \propto \sqrt{I(t)}$$

- Where *I*(*t*) is cumulative degree days derived from air temperature data
- Proportionality constant derived separately for freeze and thaw season
- Inclinometer data used to fit the model
- Average over 4 seasons is used for final result



### **Corner Reflector Timeseries**



# Discussion

- Overfitting model?
  - InSAR results are only as good as the model used to unwrap
- Incorrect assumption of stability of the anchored corner reflector?
  - Accurate phase unwrapping requires a stable reference point
  - Same method used to secure inclinometer, thaw tube, and anchored reflector to the permafrost

#### • Possible Mitigations:

- Increased temporal frequency
- Longer radar wavelength (L-band)
- Increase redundancy of field observations