



Why do we need to simulate future permafrost thaw?

## Models complement observations



Climate modelling and permafrost modelling – Scale and purpose





Translating large-scale climate change to local impacts

Preparing the driving data for our scenarios of future permafrost change is a major source of uncertainty.

How can we better understand and reduce it?

Translating large-scale climate change to local impacts



Challenge #1:
Spatial
resolution of
climate forcing
data



## Challenge #1: Spatial resolution of climate forcing data

Reanalysis: past short-range weather forecasts combined with observations



Challenge #1:
Spatial
resolution of
climate
forcing data





Challenge #2: Temporal resolution of climate forcing data



## Challenge #3: Selection of models and validation metrics



Difference between correlation matrices of original and de-biased climate model data and ERA5, respectively

## Next steps – guiding questions

How can we compare and select driving data that best represent climate in our target area?

Is the selection of best-matched atmospheric time series resulting in the best-matched simulations of permafrost variables (e.g., ground surface temperature)?