

Permafrost Geotechnical Data: Thaw Consolidation Test Results and Their Application in Settlement Estimation

PermafrostNet AGM 2023

Zakieh Mohammadi University of Calgary, Civil Engineering Department, Calgary, AB

2023-11-20

- Collected, homogenized, and integrated existing thaw consolidation data into a unified database.
- Insights into distinct thaw consolidation behavior of:
 - Fine-grained
 - Coarse-grained
 - Peat
- Characterization and parameterization
- Thaw settlement estimation tool/method development
- Contributing to building geotechnical database

Existing data

Total of 398 samples

Index properties (initial condition)

Note: The reporting of properties is not consistent across all samples.

Thaw consolidation test results

- Thaw consolidation test:
 - thawing permafrost samples under an initial load
 - additional load application
- Lack of standardized procedure
- Need for comparative parameters
- Non-linear (semi-log)
 minimizes errors for finegrained and peat samples

e_{th}= Initial thawed void ratio

C_c = compression index of the thawed soil

A₀=thaw settlement parameter

a₀= coefficient of compressibility

Comparative parameters

Correlation analysis for predicting variable identification

Coarse-grained

	s – P		e – log(P)	
	A_0	a_0	e_{th}	C_{c}
ω	0.70	0.26	0.67	0.70
θ	0.79	0.51	0.77	0.77
$ ho_{frozen}$	-0.75	-0.11	-0.61	-0.53

ω: Gravimetric water content

θ: Volumetric water content

P_{frozen}: Frozen bulk density

Fine-grained

	s – P		e – log(P)	
	A_0	a ₀	e_{th}	C_c
ω	0.56	0.45	0.88	0.88
θ	0.81	0.37	0.46	0.49
$ ho_{frozen}$	-0.84	-0.43	-0.57	-0.60

Peat

	s – P		e – log(P)	
	A_0	a ₀	e_{th}	C_c
ω	0.43	0.22	0.80	0.76
θ	0.44	0.02	0.27	0.32
$ ho_{frozen}$	0.22	-0.26	-0.32	-0.21

Correlation coefficient > 0.75

Developed correlations (peat)

$$C_{\alpha}/C_{c} = 0.06 \pm 0.01$$
 (Mesri et al., 1997)

$$thaw\ strain = f(\omega, P, t)$$

$$Total\ strain = s_1 + s_2(1 - s_1) + s_3(1 - s_1)(1 - s_2)$$

Example of using the data for estimating thaw settlement in coarse-grained sediments

- Unfrozen granular material shows a narrower void ratio range compared to frozen sediments (due to excess ice)
- Laboratory-measured minimum void ratios can be used to prescribe a conservative thawed void ratio for various types of cohesionless sediments
- Minimum void ratio depends on the particle size distribution and morphology

- A dataset of minimum void ratio (e_{min}) and median particle size (D_{50}) with 637 observations
- Data on the grain size distribution of cohesionless sediments

 Comparing the thaw strain estimated using recommended void ratios with the measured thaw strain

Method	Bias (%)	Error (%)	R ²
Ladanyi (1994)	5.3	13.11	0.51
Nixon and Ladanyi (1978)	8.3	15.61	0.47
Speer et al. (1973)	5.4	12.70	0.57
This study	-0.1	12.66	0.65

- Improved accuracy
- Reduced bias

Closing remarks

- Unified and homogenized data
 - Enhances accessibility and applicability
 - Creating / contributing to a permafrost geotechnical database.
- Distinct thaw-settlement behavior identified in three soil groups.
- Key parameters, like C_c and e_{th} , are crucial for thaw consolidation assessment.
- Improved thaw settlement prediction yields:
 - Optimized engineering designs.
 - Informed decision-making.
- Thaw strain insights offer a valuable understanding of ground ice conditions...

Thank you! Any question...?

Fine-grained vs. coarse-grained (index properties)

- More scatter data for the peat group
- Scatter data
- A₀ and visual ice content are more comparable than volumetric water content.

Objective: To develop a framework for predicting thaw settlement in permafrost regions

Local-scale assessment

Creating predictive tools/methods for thaw settlement by accounting for the unique characteristics of finegrained, coarse-grained, and highly organic soils.

Creating the Framework

Integrating diverse components to establish a framework for assessing thaw settlement across various scales.

Design charts to calculate the total strain of peat

$$Total\ strain = \frac{\Delta H_1 + \Delta H_2 + \Delta H_3}{H_0} = s_1 + s_2(1 - s_1) + s_3(1 - s_1)(1 - s_2)$$

