MSc in sustainable culvert design over degrading permafrost, Hudson Bay railway

Posted: September 10, 2019
Anticipated start:  September 2021 (flexible)
Supervisory team: Dr. Shawn Kenny and Dr. Ryley Beddoe

The performance and integrity of northern linear infrastructure, such as railway lines and road networks, may be affected by ground deformation geohazards (e.g. subsidence, slope instability, permafrost degradation), which may be influenced by hydrology and climate change effects.

Recent flooding events caused an extensive disruption to service on the Hudson Bay rail line, with damage to bridges and culverts, and failure of the rail bed due to washout. A significant effort was undertaken to restore railway operations that included the installation of several culverts. The significance of climate change effects, such as future flood events and permafrost degradation, on the future performance of the railway culvert infrastructure requires further assessment. From this perspective, the research study will assess the resilience of current design standards and practices for railway culverts located in permafrost environments.  Supported by the research effort of other team members in the PermafrostNet network, site characterization (e.g. topographic, meteorological, hydrological, geotechnical, geophysical, permafrost attributes) of several culvert locations, for both original and recent installations, will be established. Centrifuge physical modelling and numerical simulation techniques may be used to assess these failure events, based on available knowledge, and estimate future performance, based on climate scenarios developed within the PermafrostNet research activities

We are seeking a highly motivated and engaged MSc candidate, to be enrolled in a civil engineering graduate studies program, with academic interests in the fields of geotechnical and permafrost sciences, site or field investigations, physical modelling and numerical simulation. The MSc candidate will be an integral team member of a multi-disciplinary supervisory committee and collaborate with other team members within the PermafrostNet network. All applications will be reviewed by the selection committee with respect to academic qualifications and integration within the network through the PermafrostNet lens on equity, diversity and inclusion. For more information on this project, please contact shawn.kenny@carleton.ca.

MSc in sustainable culvert design over degrading permafrost, Hudson Bay railway

Posted: September 10, 2019
Anticipated start:  September 2021 (flexible)
Supervisory team: Dr. Shawn Kenny and Dr. Ryley Beddoe

The performance and integrity of northern linear infrastructure, such as railway lines and road networks, may be affected by ground deformation geohazards (e.g. subsidence, slope instability, permafrost degradation), which may be influenced by hydrology and climate change effects.

Recent flooding events caused an extensive disruption to service on the Hudson Bay rail line, with damage to bridges and culverts, and failure of the rail bed due to washout. A significant effort was undertaken to restore railway operations that included the installation of several culverts. The significance of climate change effects, such as future flood events and permafrost degradation, on the future performance of the railway culvert infrastructure requires further assessment. From this perspective, the research study will assess the resilience of current design standards and practices for railway culverts located in permafrost environments.  Supported by the research effort of other team members in the PermafrostNet network, site characterization (e.g. topographic, meteorological, hydrological, geotechnical, geophysical, permafrost attributes) of several culvert locations, for both original and recent installations, will be established. Centrifuge physical modelling and numerical simulation techniques may be used to assess these failure events, based on available knowledge, and estimate future performance, based on climate scenarios developed within the PermafrostNet research activities

We are seeking a highly motivated and engaged MSc candidate, to be enrolled in a civil engineering graduate studies program, with academic interests in the fields of geotechnical and permafrost sciences, site or field investigations, physical modelling and numerical simulation. The MSc candidate will be an integral team member of a multi-disciplinary supervisory committee and collaborate with other team members within the PermafrostNet network. All applications will be reviewed by the selection committee with respect to academic qualifications and integration within the network through the PermafrostNet lens on equity, diversity and inclusion. For more information on this project, please contact shawn.kenny@carleton.ca.

PhD in simulation of permafrost change and quantification of confidence in resulting data products

Posted: April 27, 2020 (update)
Anticipated start: Fall (September) term 2020, with flexibility in responding to COVID-19 related travel restrictions.   
Supervisory team: Stephan Gruber (Carleton University), Joe Melton (University of Victoria / Environment and Climate Change Canada), Trevor Lantz (University of Victoria) and Steve Kokelj (Northwest Territories Geological Survey).

This project will develop methods and tools for evaluating permafrost models with observational data. This is important because the lack of meaningful and quantitative evaluation of permafrost simulation results impedes the improvement of simulation tools and the use of their outputs for informing adaptation design or policy. This project will use the database compiled in NSERC PermafrostNet (PINGO) as a source of observational evidence to provide confidence in simulation-based permafrost climate services. With practical application of simulation results in mind, this project will comprehensively investigate how well ground temperature change and ground-ice loss can be predicted. For this, ensemble permafrost predictions will be analyzed in terms of error and uncertainty. Ensembles will use multiple re-analyses, downscaled heuristically, as driving climate, multiple models as well as multiple parameter and input data sets (e.g., estimated ground ice distribution, vegetation) for perturbed physics simulations in each model. Error and uncertainty will be statistically decomposed with respect to their likely origins to better inform model development and the use of model results. This quantitative evaluation will be complemented by investigating face validity, a concept developed to capture the trust that diverse experts, such as model developers, permafrost field scientists and northerners, place in simulation results based on subjective assessment. This will allow to better utilise the diverse expertise in the network for identifying and assessing known unknowns in simulations and to develop ways of communicating these to modelers and stakeholders. The combination of statistical evaluation with face validity will improve the dialogue between model developers and users of simulation results and thereby reduce barriers to the acceptance and uptake of simulation products.

This fully funded PhD studentship will be based at Carleton University in Ottawa, Canada. As part of NSERC PermafrostNet, the new Permafrost Partnership Network for Canada (permafrostnet.ca), it will have an outstanding training environment.

The successful candidate will have (1) a master’s degree in a relevant discipline (e.g., geography, Earth science, geophysics, soil physics, atmospheric science, environmental engineering or geotechnical engineering); (2) demonstrated skill in programming and data analysis; (3) previous experience (or a demonstrated interest) in cold regions; as well as (4) excellent written communication in English.

This PhD studentship is fully funded for twelve months per year, for up to four years. International students are eligible to receive a bursary that will reduce their tuition to the amount paid by domestic PhD students.

To apply, Send a cover letter, c.v., copies of transcripts, a writing sample, and contact details for three references to Stephan Gruber (stephan.gruber@carleton.ca). Applications will be received until the position is filled.

PhD in thaw pond initiation and evolution pathways

Posted: June 27, 2019
Anticipated start: September 2019 (or as soon as possible) 
Supervisory team: Dr. Pascale Roy-Léveillée, Dr. Merritt Turetsky, Dr. Trevor Lantz, Dr. Peter Morse

This position will elucidate controls on 1) the initiation of thaw lakes and ponds, 2) variation in rates of expansion, and 3) pathways of stabilization and permafrost recovery post stabilization. Field work will take place in thermokarst-affected lowlands between the Blackstone Uplands (YT) and Tuktoyuktuk (NWT). The position will develop predictive models based on the interacting effects of paleogeography (deposits and ice), climate, topography, snow cover, and vegetation growth within thaw ponds. This work will support the development of a lowland thermokarst hazard assessment framework to support the effective evaluation and management of risks associated with signs of thermokarst initiation near existing or planned infrastructure, traditional travel routes and areas of cultural significance, sensitive wildlife habitat, etc. For more info on the project contact proyleveillee@laurentian.ca.

MSc in thaw-related landscape change in Weenusk Traditional Territory

Posted: June 27, 2019
Anticipated start: September 2022 (flexible) 
Supervisory team: Dr. Pascale Roy-Léveillée, Dr. Maara Packalen, Dr. Trevor Lantz, Dr. Peter Pulsifier

In Weenusk First Nation’s traditional territory, near the Hudson Bay coast, local residents report widespread signs of permafrost degradation: degrading palsas and peat plateaus, widespread ground wetness, and changes in vegetation cover. These changes affect local access to country food by impeding overland travel and modifying the habitat of species key for local food security. This MSc will work in collaboration with community members and use remotely-sensed imagery and ground observations to map changes in moisture, vegetation, and extent of palsas and peat plateaus using object-based analysis. This work will support on-going community-based monitoring initiatives by creating maps of changing conditions at the territory scale that can be overlain with maps of trails, family areas, and sites of cultural significance. For more info on the project contact proyleveillee@laurentian.ca.